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ABSTRACT .

Close-in air-blast data from the 4.3 t 0.4 kt Palanquin event
in the Plowshare Program for development of nuclear excavation are
presented and evaluated. When blast suppression factors are compared
with those of past events, an effective yield of 2 kt is required to
make Palanquin ground-shock-induced peak overpressures agree with
those of past events. Four components of the blast wave from crater-
ing explosions first observed on Project Dugout were again identified
on Project Palanquin. The first two, the ground-transmitted, ground-
shock-induced pulse and a Rayleigh-wave-induced pulse, are of academic
interest. Of primary interest to Plowshare excavation projects are
the air-transmitted, ground-shock-induced pulse (which dominated all
the others) and the pulse from venting gases (for which the data sug-
gest that peak overpressure may increase as the yield increases).

Close-in pressures should be measured on any future event with
a yield equal to or larger than Palanquin to resolve uncertainties
created by the nature of Palanquin venting and to determine if there
are nonscaling pressure increases with larger yields. The transition
region between the epicenter and the genesis of the Rayleigh wave
warrants investigation when the opportunity arises.
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FOREWORD

"This document is the author's report to the Technical Director
of Project Palanquin. The findings and conclusions contained herein
are those of the author and are not necessarily those of the Atomic
Energy Commission. Accordingly, references to this material must cite
the author."
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CLOSE-IN AIR BLAST FROM A CRATERING
NUCLEAR DETONATION IN RHYOLITE

CH 1 - INTRODUCTION

1.1 Description of the Palanquin Event

Project Palanquin was a nuclear experiment in hard, dry rhyolite
rock executed as part of the Plowshare Program for development of
nuclear excavation. Palanquin was fired on April 14, 1965, at approxi-
mately 0514.,0105 (PST), 1314.0105 (GMT), in Area 20, Nevada Test Site.
The resultant yield was 4.3 * 0.4 kt. The emplacement hole was U20K
at geodetic coordinates

Longitude wllé°® 31' 24.8012"
Latitude N 37° 16' 49.3501"

The resultant average crater dimensions are:

(1) Crater Radius 36.31 meters 119.13 feet
(2) Crater Depth 24 .01 meters 78.8 feet
(3) Crater Lip Height 6.47 meters 21.22 feet
(4) Lip Crest Radius 44,66 meters 146.53 feet
(5) Ejecta Boundary 81.63 meters 267.83 feet
(6) Lip Volume, Apparent 98,757 cubic meters 131,260 yd?®

(7) Crater Volume, Apparent 35,569 cubic meters 46,802 yd>

1.2 Objectives

The objectives of the close-in air-blast experiment were:

a. To measure close-in air blast as a function of
distance from a nuclear explosion in hard rock
at a yield larger than those fired theretofore,

b. To compare these measurements with results from
earlier HE and NE detonations in hard rock and
other media, and

c. To establish a means fdr predicting blast from
large-yield nuclear explosions by establishing
blast suppression as a function of charge burial.




1.3 Background

Close-in air blast from single TNT shots in hard rock (Project
Buckboard?!) showed little difference from that from single TNT shots
in alluvial soil (Project Stagecoach® and Project Scooter?®). Both
exhibited two waves propagated at sonic velocity in air, one due to .
the piston action of the ground shock at the epicenter followed by
a second larger pulse due to venting gases. Project Danny Boy*» %5,
the first nuclear cratering experiment in hard rock (0.43 kt at
115 ft), gave signals in which, by contrast, the initial wave was 4
the larger. Lack of an accurate time base on the records prevented
positive identification of larger constituents of the wave. Pro-
jects Dugout® (a row of five 20-ton nitromethane charges buried 59
ft and spaced 45 ft apart) and Sulky” (a single 0.085 kt nuclear
charge at 90 ft) records were accurately timed and provided the oppor-
tunity for positive identification of four constituents of the blast
wave, which were as follows.

a. A ground-transmitted, ground-shock-induced pulse,
which is maximum at the epicenter, propagated
radially from the explosion at sonic velocity in
rock. Because the ground shock attenuates rapidly
with distance, so also does the air blast it gen-
erates. The attenuation rate of the induced air
pulse is further increased because only the verti-
cal component of ground motion will generate air
blast, and that component decreases rapidly with
decreases in the ratio of burial depth to distance.
The direct ground-shock-induced pulse was not posi-
tively identified from arrival times on either the
Dugout or Sulky shots because of the great spacing
between the epicenter and the closest gage. How-
ever, it may have been indicated by a larger-than-
expected peak overpressure at the closest gage
station on each event.

b. A Rayleigh-wave-induced pulse was observed from
the closest to the most distant stations on both
the Dugout and Sulky events. This pulse propagated
in basalt at about 4500 ft/sec--slower than the
shock velocity in rock but faster than that in the
air. Until the Palanquin event, it was not certain
whether this was actually an air-pressure pulse or
the output of a gage sensitive to the ground motion.

¢. The air-transmitted, ground-shock-induced pulse is,
at the epicenter, the same as the ground-transmitted,
ground-shock-induced pulse. From the epicenter, how-
ever, it propagates outward at shock velocity in air
rather than at the velocity through the ground. For
Projects Sulky and Dugout, it was the dominant wave,
and it is presumed to have been the dominant pulse for
Danny Boy.

d. The final pulse is that due to venting gases. On ¥
both Sulky and Dugout, the arrival coincided with
the negative phase following the preceding air-
transmitted, ground-shock-induced pulse. Because




of this and the small amount of gas created by the
nuclear explosion, the peak overpressures from the
Sulky gas venting pulse did not rise above ambient
pressures. For Project Dugout, the peak was greater
than the ambient pressure but still was not as large
as the peak from the air-transmitted, ground-shock-
induced pulse.

In addition to the principle objectives, the Palanquin experi-
ment was designed to shed light on air blast at the epicenter and in
the region between the epicenter and the closest previous measurement,
especially to identify both the ground-transmitted, ground-shock-
induced pulse and the development of the Rayleigh-wave-induced-pulse.

In the formation of the crater from the 28Q-foot Palanquin shot
erosion from venting gases appears to have played a larger part than
on previous cratering events. For this reason the air blast from
venting gases of Palanquin may not be precisely comparable to that
of the earlier shots.




CH 2 - PROCEDURE

2.1 Experiment Plan

One blast line was installed running radially S70°E from ground
zero; six stations, each containing two gages, were located at O,
328, 705, 1575, 3280, and 7380 feet. A third gage was added at the
most distant stalon with the gage port closed to determine whether
or not the gage was measuring a Rayleigh-wave-induced air pressure
or was sensitive to the Rayleigh wave itself. The ground zero sta-
tion consisted of two gages suspended at a height of 3 feet above
the concrete pad approximately 21 feet from surface zero. Because
of uncertainty in the expected overpressure, each of the two gages
had different set ranges (Table 2.1). Thus, if the overpressure was
higher than expected, the low range gage would be overranged and the
higher range gage would record satisfactorily. Similarly, if the
overpressures were small, the lower range gage would record the sig-
nal even if it fell below the sensitivity of the higher range gage.

TABLE 2.1

Location and Set Ranges of Gages

Station Range Expected Overpressure (psi)
No. Feet Meters High Range Low Range
1 21 ~6 15 3
2 328 107 0.6 0.2
3 705 215 0.25 0.09
4 1575 480 0.10 0.035
5 3280 1000 0.045 0.015
6 7380 2250 0.020 0.007

2.2 Instrumentation

Pace P-7 diaphragm-type pressure gages were used. Information
was carried through Consolidated System D amplifiers with an 800-cps
response and recorded with an Ampex LP-100 magnetic tape recording
system. There were no gage failures other than those which were
anticipated at the ground zero stations when either signal cables
broke or the suspended gages came in contact with the rising ground
surface.




CH 3 - TEST RESULTS

3.1 Summary of Results

All measured overpressures were at or slightly below the set
range of the more sensitive gages. Only the most sensitive gage at
ground zero showed evidence of limiting.

Table 3.1 summarizes the results of the pressure measurements.
The pressure records are reproduced in Appendix A. As in the two
previous experiments (Dugout and Sulky), records from dual-gage sta-
tions have been plotted together and the agreement, in spite of the
difference in set ranges, is quite good, as evidenced by the simi-
larity of the two records.

The various peaks in certain of the records in Appendix A have
been identified where possible by numbers from one to four, accord-
ing to the four major phases of the blast wave described in Chapter 1.
Letters following the numeral indicate the sequence of minor waves in
that phase of the wave train. Peak overpressures are similarly iden-
tified in Table 3.1.

A flare of hot gas was evidenced by a brilliant flare of light
at about 36 milliseconds. The gas came to the surface about 21 feet
from the closest gage station, and propagated outward from surface
zero at sonic velocity in air, and is seen as a spike on the records
at all stations superimposed on the air-transmitted, ground-shock-
induced pulse. This spike has been identified in the table and in
the records as 3c.

In Figure 3.1, the time-of-arrival of various signals and times
of major peaks are plotted versus distance, and the propagation
velocity is shown. The ground-transmitted waves are easily distin-
guished from air-transmitted ones.

With the exception of the two gages at the most distant station,
all channels were recorded directly. These two channels were multi-
plexed with channels from experimental gages. While in principle no
differences should have occurred, in fact the amplitudes of those two
channels, although in agreement with each other, are-about 2-1/2 times
higher than would be expected from a comparison with records from
other gage stations. This difference was not recognized until long
after the event and after a portion of the equipment had been dis-
assembled. An effort to determine a cause of the difference was un-
successful. Little further comment is made on this inconsistency,
and throughout the discussion (Chapter 4) the records from those two
gages are ignored in making comparisons. '




As noted in Chapter 2, a third gage, with its port sealed to
exclude air pressure, was added to the station at 7380 feet. Previ-
ous measurements of ground-transmitted, ground-shock-induced and
Rayleigh-wave-induced pulses left doubt as to whether induced air
pressure was being measured or whether the gage, acting as an accel-
erometer, was measuring ground motion directly. The gage with the
port closed, identical in every other way with one of the others at
the same station, produced no detectable signal. On the basis of
this measurement, it can be stated as conclusively as a single meas-
urement warrants that the gage is not acceleration-sensitive and is,
in fact, measuring air pressure induced by the ground motion.

10
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CH 4 - DISCUSSION AND INTERPRETATION

4.1 Introduction

Chapter 4 is organized to describe fully each of the four
pulses in the order of their occurrence. This approagh seems more
meaningful than to describe all. four waves in categories of arrival
time, peak overpressures, impulses, and durations.

4,2 Ground-Transmitted, Ground-Shock-Induced Pulse

Arrival Times -- Stearns® found the velocity in the upper 90
feet (presumably the weathered zone of the rhyolite) to average
3900 ft/sec. From 90 feet to near shot depth (280 feet) the velocity
averaged 8000 ft/sec. Stearn's findings can be used to calculate a
maximum arrival time of 46.8 msec for the ground-transmitted wave at
the epicenter. Later sonic velocity data, when used in a TENSOR cal-
culation, gave an arrival at about 40 msec.® 1In Table 4.1, the calcu-
lated values are compared with measured arrivals. The last two col-
umns suggest that except for the epicenter gage the first arrivals
are not those of the ground-transmitted pulse.

TABLE 4.1

Calculated and Measured
Arrival Times of First Signal

Ground Elevation Calculated Measured Arrival of
Range of Gage Arrival Time First Detectable Signal
(£ft) (ft) (msec) (msec)
21 6191 40.%  (43.)%* 43.1
328 6181.15 68.3 78.5
765 6157.83 111.8 137
1575 6126.38 218.4 398
3280 6093.44 430.8 680
7380 6088.63 945.1 1005

* . R
At the epicenter ﬁround—alr interface. An accelerometer
record also gave 40 msec.®

ok
At the gage 3 feet above the surface.

13




One may assume that the free-surface velocity is twice the
vertical component of the ground-shock velocity and that the free-
surface velocity equals the particle velocity behind the air-shock
front generated by the surface motion. TENSOR calculations, which
at later times are in agreement with observed surface motion data,
show the free-surface velocity to be 10.5m/sec® which would lead to
a shock strength of 0.53 psi. This is about equal to the 0.62 psi
actually observed at 43. msec. An arrival time at the gage of
43. msec indicates an arrival at the ground surface about 3 msec
earlier (40. msec)--earlier than the 46.8 msec at the surface sug-
gested by Stearn's velocities alone. Forty msec is in agreement
with TENSOR calculations and is reasonable because higher than sonic
velocities in the hydrodynamic fegion would lead to an expected
earlier arrival. On the basis of arrival times, the first signal
at the epicenter gage (see Figure A-3) is attributed to the ground-
transmitted pulse. The subsequent larger pressures are attributed
to a flare, described later in more detail, which appears on the
motion picture records at about 36 msec.®

At each of the next four stations, the first detectable signal
on the record arrives from 15 to 80 percent later than calculated.
Its arrival at the most distant station is more nearly the calculated
value. One possible explanation is offered. Away from the vicinity
of the drill hole at ground zero, the medium may depart drastically
from that described by Stearns. A deeper layer with lower sonic
velocity could significantly delay the arrival time. This hypothesis
requires that the lower velocity layer 1s again thin below the most
distant gage station, causing the signal to be transmitted through
deeper high-velocity strata.

Peak Overpressures -- The peak overpressures attributed to the
ground-transmitted, ground-shock-induced pulse provide no consistent
pattern of attenuation with distance. Radial particle velocities in
the ground initially attenuate with distance about as the inverse
2.3 power of radial distance. 1If the peak overpressures induced by
the ground motion attenuated at the same rate (they should be attenu-
ated at a greater rate since only the vertical component of motion
should induce overpressure in the air), then only the overpressure
measured at the 705-foot station gives a reasonable value--those
at the 328- and 7380-foot stations are much too high. The preferred
interpretation is that the ground-transmitted, ground-shock-induced
pulse was observed only at the epicenter station.

4.3 Rayleigh-Wave-Induced Pulse

Arrival Times -- The ground-transmitted pulse, which is pre-
sumably Rayleigh-wave-induced, consists of a train of waves, six of
which can be tenuously identified. Greater confidence lies in iden-
tification at the more distant stations. At closer stations, it is
not nearly so clear that the major overpressure peaks can be identi-
fied with those of the more distant stations. If identification is
correct, the arrival times of the peaks (Figure 3.1) show that each
successive wave in the wave train is propagating at a lower phase
velocity. The earliest wave has a velocity of from 4900 to 5630 ft/
sec, while the last identifiable wave has a velocity of only 1840

ft/sec.
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Peak Overpressures -- Peak overpressures of the first wave
(identIfied by 2 in the figures) attenuate approximately as r-1-8°
(ignoring the value at the 1575-foot station), a rate which cannot
be identified with the rate for any previous corresponding pulses
on experiments. Because of phase shifts, the succeeding waves have
peaks w?ich do not exhibit any uniform rate of attenuation (Fig-
ure 4.1).

2a
2b
2¢
24
2e

Dag«ap +o

PEAK OVERPRESSURE (psi)

0.0 p—

0.00! |~

0.0001 | : |
0 100 1000 10,000

GROUND DISTANCE (ft)

Figure 4.1 Peak overpressure from Rayleigh-wave-
induced pulse versus ground distance
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4.4 Air-Transmitted Ground-Shock-Induced Pulse

Arrival Times -- The arrival times indicate that the air-
transmitted, ground-shock-induced pulse propagates with a velocity
(1080 ft/sec) which is in agreement with velocities of other air-
transmitted waves (1080-1090 ft/sec). Sonic velocity calculated for
the Palanquin ambient conditions is 1084 ft/sec.

Peak Overpressures -- The peak overpressures of the air-
transmitted, ground-shock-induced pulse provide a consistent pattern
attenuated as r~%-%% (Figure 4.2)--except at the most distant station
where, as noted earlier, the peaks are more than two times what they
should be to be consistent with other stations. Note that peak 3a
is equal to or greater than peak 3b except at the 705-foot station.
These peaks were the dominant ones at all stations excluding the
perturbation of the flare peak described later. Peak overpressures
from this pulse have been the most consistent from one shot to the
next as contrasted with the peaks from venting gases which are af-
fected by their position in time with respect to the negative phase
following the air-transmitted, ground-shock-induced pulse. Because
of the consistency, it is in order to ask what yield at the burst
depth of Palanquin would have given the observed gverpressures. The
comparison was made at a scaled range of 5 ft/1b?/? (based on 2 kt),
and suggested a yield of 2 kt based on the first peak (peak 3a) and
the most sensitive gage at each location. Based on both gages, the
suggested yield is essentially the same. By making the comparison
on the basis of a ground-shock-induced pulse, any uncertainties re-
sulting from venting anomalies are avoided. Such is not the case if
peak overpressures from venting gases are used. The attenuation
rate with distance of any air-transmitted pulse such as this peak
overpressure is a function of nearly hemispherical divergence modi-
fied by meteorological conditions at shot time, especially wind and
temperature gradients. Hence, the yield as calculated in this way
will depend to some extent on the ground range at which the compari-
son is made. A scaled range of 5 ft/1b*/® was chosen for the com-
parison made here only because data at that distance are available
for the largest number of shots.

4,5 TFlare Pulse

A flare of hot gas gave rise to a true shock wave., Such a wave
propagates to all stations at the sonic velocity in air (Figure 3.1)
and rides on the declining portion of the air-transmitted wave gen-
erated by the epicenter ground shock, The peak flare overpressure
as a function of distance is shown in Figure 4.3, The peak over-
pressures and the impulses of the flare pulse measured with respect
to the wave on which the pulse was superimposed are listed in
Table 4.2 and plotted in Figures 4.4 and 4.5.
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Figure 4.2 Peak overpressure from the air-transmitted,
ground-shock-induced pulse versus ground
distance
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TABLE 4.2

Characteristics of Flare Pulse

Peak Positive Duration of

. Overpressure Impulse Positive Phase
Station (psi) (psi-msec) (msec)
328-1 0.22557 2.80 2.42
-2 0.32966 2.65 3.73
705-1 0.09810 1.01 2.91
-2 0.13824 1.11 3.74
1575-1 0.04665 0.617 2.27
-2 0.04252 0.542 2.35
3280-1 0.01462 0.227 1.93
-2 0.01597 0.293 1.64
7380-1 0.01260 0.146 2.59
-2 0.01157 0.132 2.63
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High-speed motion pictures recorded arrival at the surface of
the flare at 36 msec.® The pictures were substantiated by a signal
on the electrical system of an accelerometer located nearby. An
initial overpressure peak of 4 psi was observed at 45 msec (Fig-
ure A-3). About 2.75 pounds of TNT burst on the surface would give
4 psi 21 feet away,'® and the signal would arrive at about 1l.4 msec.
This, added to the observed arrival of the flare, suggests the wave
would be expected at about 47.4 msec--later than the 45 msec at
which it was actually observed. Thus, the arrival time appears con-
sistent only with a stronger shock than that recorded. One possible
explanation is that an air shock preceded the flare by about 2.4 msec
and that it was not visible on the photographs which recorded the

flare.

When the impulse data are extrapolated back to the vicinity of
the epicenter, the 25.6 psi-msec measured there (see Figure A-3) is
a seemingly reasonable value and suggests that the flare pulse makes
the predominant contribution to the pulse measured at the epicenter.
The duration of the flare pulse observed photographically was about
11 msec,© agreeing with the duration from Figure 4.3.

When the pressure data are extrapolated back to the 2-psi level
assuming the attenuation rate of the dashed line of Figure 4.4 and
compared with Kirkwood-Brinkley free-air curves for cast TNT, the
most sensitive gages (Gage 1, Figure 4.4) suggest an equivalent TNT
source of 56 pounds, and the least sensitive gages suggest a source
of 150 pounds. Impulse comparison suggests an equivalent source of
3650 pounds.

Since the flare pulse is a shock wave, it can be described by

p = Pm<1 - %_-;) e-c(t/t+)

where p is the pressure at any time t, p, the peak overpressure, and
ty the positive phase duration. The constant ¢ describes the rate

of decay of the blast wave. Comparison of this wave-shape factor

for the flare pulse with factors for ideal blast waves from HE shows
the wave shape to be about that of an ideal blast wave. The constant
¢ has an average value of 0.86 for the flare pulse; this suggests a
decay rate slower than most shock waves, and is consistent with the
larger equivalent source derived from impulse.

4.6 First Positive-Phase Impulse

The wave train consisting of the first three waves (ground-
transmitted, ground-shock-induced; Rayleigh-wave-induced; and air-
transmitted, ground-shock-induced) has intermittent excursions below
ambient pressure. The summation of impulse to a give time is one
means of measuring the consistency of the data. Since the air-
transmitted, ground-shock-induced pulse is followed by a distinct
negative phase, the crossover preceding the negative phase constitutes
a definable time at which to measure impulse. The results (Fig-
ure 4.6) show impulse attenuates with distance about r~2.?5, based on
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the second (least sensitive) gage at each of the 328-, 705-, and
1580-foot stations. The positive phase at the 3280-foot station is
low with respect to the closer stations. At first glance, it appears
caused by a phase shift in which the small pulse immediately follow-
ing the flare spike moves from the positive phase at the 1580-foot
station into the negative phase at the 3280-foot station. As a mat-
ter of fact, this pulse could account for only a small portion of the
loss of impulse at the latter station. The shift of the small pulse
into the negative phase should reduce the negative phase as well and,
as will be seen in the following section, such is not the case.
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E - \
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- \\
L \ ?-
i . N\
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AN
| 1 1 I N W I B { | ISR T I |
100 1000 10,000

GROUND DISTANCE (ft)

Figure 4.6 First positive-phase impulse
versus ground distance

The flare overpressure peaks (Figures 4.3 and 4.4) measured by
the less sensitive gages (dashed line) suggest that values for the
3280-foot station are low, but that those measured by the more sensi-
tive gages (solid line) suggest no shortcoming at the 3280-foot sta-
tion.. Flare impulse at the 3280-foot station is consistent with that
at the closer station. It would not be consistent if there were a
gage calibration error; a base-line drift is a remaining possibility.
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4.7 Peak Negative Pressure and Negative Impulse

Peak negative pressure attenuates uniformly with distance
(Figure 4.7). Pressures measured at the 3280-foot station are con-
sistent with pressures measured at the closer stations. Negative
impulses at that station are definitely high (Figure 4.8). Low
positive-phase and high negative-phase impulses strongly suggest a
base-line drift upward for both gages at that station. However,
that hypothesis is not consistent with a negative peak which agrees
well with results at closer stations.

O GAGE |
+ BAGE 2

0.1

Ill)ll

PEAK NEGATIVE PRESSURE (psi)

0.0

] 1 L1 1 111
1000 10,000

GROUND DISTANCE {ft)

0.00 { 1 | S I I B I
100

Figure 4.7 Peak negative pressure
versus ground distance
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Figure 4.8 Negative-phase impulse
versus ground distance

4.8 Pulse From Venting Gases

At all stations except the one near the epicenter, the pulse
from venting gases exhibits two distinctly separate pulses (4a and
4b in Figure 4.9 and in figures in the Appendix). Two distinct
surges of venting gases are to be seen in the motion pictures of
the event, one beginning at 645 msec and one at 837 msec. When the
times at which pulse 4a begins to emerge from the negative phase are
extrapolated back to surface zero, the agreement with the first of
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the above times is good. The 837 msec appears to be too early to be
identified with pulse 4b. Certain observations can be made from
Figure 4.9. At the 328-foot station, peak 4a is larger than peak 4b
by a factor of 2. Further out, however, 4b has attenuated much less
and the peaks become nearly equal. Peak 4a attenuates with distance
about as the other peaks, and again values for both peaks at 3280
feet appear low with respect to the line shown in the figure which
was drawn through values for the more sensitive gages (Gages 2) at
stations closer than 3280 feet.
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I
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O+

i | I T I A | 1 I S I
0.00i
100 1000 10,000

GROUND DISTANCE (ft}

Figure 4.9 Peak overpressure from venting
gases versus ground distance

4.9 Total Impulse

Total impulse for the entire wave train from first arrival con-
tinues to show low values for the 3280-foot station (Figure 4.10).
* Values at the near station also appear low, mainly because of the
relatively small contribution of pulse 4b at that station.

24




too

b O GAGE |
+ GAGE 2
s
H
H
| 4 —
L [
1
2
w
3 o
2
R
_ o
-
« —
x
(-3
4 |
o
-+
Q@
) 1 1 11|1|1! 1 ] I S I
100 1000 10,000

GROUND DISTANCE {ft)

Figure 4,10 Total impulse versus ground distance

4,10 Pulse Identification

An aid to wave identification was found in some auxiliary
measurements. Pressure gages identical to those on the ground had
been located 35 feet above the 3280-foot station to provide pressure
correlation with some experimental gages. Unfortunately, the cali-
bration of these gages was lost, but when the flare peaks were made
identical to those measured at ground level, the results are as shown
in Figure 4.11. The figure shows a delay of about 35 milliseconds
for pulses that are ground-transmitted but little or no delay for
those which are air-transmitted. There are some interesting and un-
explained qualitative differences between the two signals. The gage
35 feet above ground level shows little of the decrease preceding
and following the flare pulse. The steps following the negative peak
are noticeably different.
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4,11 Discussion

While the various pulses in the Palanquin wave train are
academically interesting, the major pulses of concern for the Plow-
share Program are the air-transmitted, ground-shock-induced pulse
and the pulse from venting gases. It is important to inquire into
the scaling of air blast from buried nuclear explosions. Air-
transmitted, ground-shock-induced pulses from past shots show little
difference between HE and nuclear explosions and little difference
due to medium--the overpressures are only slightly higher for the
harder materials. From earlier shots, the amount of blast suppres-
sion by charge burial has been determined. The blast suppression
factor is defined here as the ratio of: (a) peak overpressure from
a surface burst, and (b) peak overpressure from the same yield buried
below the surface.

Figure 4.12 summarizes air-blast suppression by charge burial
for all past events at a scaled ground range of 5 fe/1bY/3 (630 ft/
kt1/3). The following are the significant points from Figure 4.12.

a. Peaks from venting gases of nuclear shots in
alluvium are suppressed less rapidly by burial
than are HE shots. This observation comes from
Teapot ESS and Sedan data and can be a result of
more pressure caused by water vapor in the medium,
or it can be caused by a yield effect--larger
yields producing relatively more overpressure.

The 100-kt Sedan shot had pressures from venting
gases so large that the ground-shock-induced
pressures were overtaken by them.

b. What happens to peaks from venting HE gases for
bursts deeper than 1.75 ft/1b*/® (220 ft/kt/3)
remains to be determined from additional HE ex-
periments at those depths.

c. The ground-shock-induced peaks for HE in both
basalt and alluvium and for NE in basalt are
essentially the same. The rate of suppression
with burial depth of the ground-shock-induced
peaks approaches, for the deeper burial depths,
the rate of suppression for the peaks from vent-
ing gases for HE shots.

d. Information on peaks from venting gases from
nuclear events in rock has been limited to Sulky,
Danny Boy, and, now, Palanquin. Both of the
earlier shots show peaks from venting gases much
less than the ground-shock-induced peaks. While
the gas-venting peaks were readily identifiable,
especially on Sulky, they were superimposed on
the negative phase following the ground-shock-
induced peaks. As a result, the amplitudes were
low (the peaks for Sulky equaled only ambient
pressure and yielded an infinity value for the
blast suppression factor).
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As noted earlier, when the Palanquin ground-shock-induced over-
pressures are compared with those of other shots, a yield of 2 kt is
indicated. The suppression factors for both peaks and for both the
inferred and nominal yields are plotted in Figure 4.12. 1If the infer-
red and nominal yields of Palanquin are assumed, the peak overpressure
from venting gases at a scaled range of 5 ft/1b1/3 for the three
nuclear events in rock is as follows.

W dob Pnax
(kt) (£t/1b%/3) (psi)
Sulky 0.085 1.66 0
Danny Boy 0.43 1.15 0.015 - 0.040
Palanquin 2.00 1.76 0.028
Palanquin 4.00 1.40 0.022

There remains in these data a suggestion of an increase in
pressure from venting gases with an increase in yield. Since there
is also a suggestion of an increase with deeper scaled burial depth,
the increase with yield for a single burial depth would be even more
pronounced. If further data verify the increase with yield, the
very large peaks from venting gases from Sedan would have a clearer
basis than higher moisture content alone.

Where the pulse from venting gases is superimposed on the
negative phase following the ground-shock-induced pulse, it is im-
possible to tell whether or not the negative phase reached its
natural minimum value before arrival of the pulse from venting gases
(or whether arrival of that pulse terminates further excursion into
the negative regime by its arrival). If not, the peak-to-peak valde
is a better measure of the contribution from venting gases than the
overpressure. The results of Sulky and Palanquin (no negative pres-
sures are available for Danny Boy) at a scaled range of 5 ft/1b*/3
are

W dob P, *P_

(kt) (ft/1bY/3) (psi)

Sulky 0.085 1.66 0.038
Palanquin 2.00 1.76 0.108
Palanquin 4.00 1.40 0.076

The suggestion of an increase in pressure contribution from
venting gases with an increase in yield remains in the peak-to-peak
pressures also. Motion pictures of the venting of gases from
Palanquin suggest characteristics which are qualitatively different
from previous explosions at comparable burial depth. Consequently
future experience may show that comparisons such as those made abov
are invalid. »
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CH 5 - CONCLUSIONS

Four separate components of the blast wave were identified.
These were: a ground-transmitted, ground-shock-induced pulse; a
Rayleigh-wave-induced pulse; an air-transmitted, ground-shock-
induced pulse; and a pulse from venting gases. The latter two
pulses are the ones of primary interest to Plowshare excavation
projects. For Palanquin, the air-transmitted, ground-shock-induced
pulse dominated the other pulses. The pulse from venting gases was
smaller primarily because it was coincident with the negative phase
immediately following the air-transmitted, ground-shock-induced
pulse. Otherwise it would have been the dominant pulse. When the
peak pressure from Palanquin venting gases is compared with corre-
sponding peaks from comparable explosions, there is tenuous evidence
that the peak overpressure increases as the yield increases. Thus,
no opportunity should be lost to make comparable measurements on
shots with yields larger than that of Palanquin. The manner in
which the Palanquin explosion vented was sufficiently unique to make
it impossible to compare confidently the pulses from venting gases
with corresponding pulses from other buried explosions. For this
reason similar measurements should be made on any event with a yield
comparable to that of Palanquin. Nothing, however, should impair
the credibility of the air-transmitted, ground-~shock-induced pulse
observed at stations beyond the epicenter.

When the air-transmitted, ground-shock-induced peak overpres-
sures are compared with those from other buried explosions, an
effective yield of 2 kilotons is indicated for Palanquin.

The first two pulses are of considerable academic interest.
It is not at all clear from the results to date how the transition
from the ground-transmitted, ground-shock-induced pulse to the
Rayleigh-wave-induced pulse is accomplished. This transition region
is worthy of further exploration when the opportunity occurs.
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